Evaluation of air traffic complexity metrics using neural networks and sector status

نویسندگان

  • David Gianazza
  • Kévin Guittet
چکیده

This paper presents an original method to evaluate air traffic complexity metrics. Several complexity indicators, found in the litterature, were implemented and computed, using recorded radar data as input. A principal component analysis (PCA) provides some results on the correlations between these indicators. Neural networks are then used to find a relationship between complexity indicators and the actual sector configurations. Assuming that the decisions to group or split sectors are somewhat related to the controllers workload, this method allows to identify which types of complexity indicators are significantly related to the actual workload.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Airspace configuration using air traffic complexity metrics

Flow regulation is a critical process in air traffic management, ensuring that the incoming traffic does not exceed the ability of air traffic controllers to handle it safely and efficiently. Currently, the european Flow Management Positions (FMP) use flight counts and sector capacities to assess the traffic load and build predicted opening schemes. These schemes, made of predefined airspace co...

متن کامل

A Genetic Algorithm - Based Bp Neural Network Method for Operational Performance Assessment of Atc Sector

To assess operational performance of air traffic control sector, a multivariate detection index system consisting of 5 variables and 17 indicators is presented, which includes operational trafficability, operational complexity, operational safety, operational efficiency, and air traffic controller workload. An improved comprehensive evaluation method, is designed for the assessment by optimizin...

متن کامل

Accuracy comparison of Elamn and Jordan artificial neural networks for air particular matter concentration (PM 10) prediction using MODIS satellite images, a case study of Ahvaz.

Due to the complexity of air pollution action, artificial intelligence models specifically, neural networks are utilized to simulate air pollution. So far, numerous artificial neural network models have been used to estimate the concentration of atmospheric PMs. These models have had different accuracies that scholars are constantly exceed their efficiency using numerous parameters. The current...

متن کامل

Validating airspace Analyzer Metrics for En Route ATC Sector Complexity

The MITRE Corporation’s Center for Advanced Aviation System Development (CAASD) has developed a tool, airspaceAnalyzer, to measure sector complexity. It does so by performing automated air traffic control—separating traffic while respecting aircraft performance and restrictions on altitude and miles-intrail. It outputs a suite of raw metrics, derived from characteristics of these resolutions. W...

متن کامل

Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization

Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006